

Home Search Collections Journals About Contact us My IOPscience

Phase stability and pressure-induced structural transitions at zero temperature in ${\rm ZnSiO_3}$ and ${\rm Zn_2SiO_4}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 485801

(http://iopscience.iop.org/0953-8984/21/48/485801)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:16

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 21 (2009) 485801 (9pp)

Phase stability and pressure-induced structural transitions at zero temperature in ZnSiO₃ and Zn₂SiO₄

S Zh Karazhanov^{1,2,3,5}, P Ravindran¹, P Vajeeston¹, A G Ulyashin^{2,6}, H Fjellvåg¹ and B G Svensson⁴

- ¹ Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
- ² Institute for Energy Technology, PO Box 40, N-2027 Kjeller, Norway
- ³ Physical-Technical Institute, 2B Mavlyanov Street, Tashkent 700084, Uzbekistan
- ⁴ Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway

E-mail: smagul.karazhanov@ife.no

Received 8 September 2009, in final form 19 October 2009 Published 6 November 2009 Online at stacks.iop.org/JPhysCM/21/485801

Abstract

Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO₃ and Zn₂SiO₄ have been studied. Among the considered monoclinic phase with space groups $(P2_1/c)$ and (C2/c), rhombohedral $(R\overline{3})$ and orthorhombic (Pbca) modifications the monoclinic phase $(P2_1/c)$ of ZnSiO₃ is found to be the most stable one. At high pressure monoclinic ZnSiO₃ (C2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO₃ polymorphs: monoclinic $(P2_1/c) \rightarrow$ monoclinic $(C2/c) \rightarrow$ rhombohedral $(R\overline{3})$. Among the rhombohedral $(R\overline{3})$, tetragonal $(I\overline{4}2d)$, orthorhombic (Pbca), orthorhombic (Imma), cubic $(Fd\bar{3}m)$ and orthorhombic (Pbnm) modifications of Zn_2SiO_4 , the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral $(R3) \rightarrow$ tetragonal $(142d) \rightarrow \text{orthorhombic } (Pbca) \rightarrow \text{orthorhombic } (Imma) \rightarrow \text{cubic } (Fd3m) \rightarrow \text{orthorhombic}$ (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg₂SiO₄ as input, structural properties of spinel Zn₂SiO₄ have also been studied.

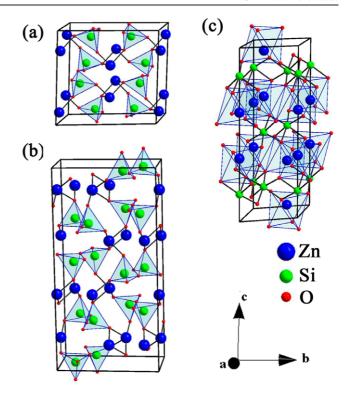
1

1. Introduction

Studies of the interface between semiconductors and transparent conducting oxides (TCO) present great interest for optoelectronic device technology. During fabrication of device structures based on contact semiconductor/TCO a mutual diffusion of the atoms from semiconductor to TCO and vice versa can take place at the interface. At high concentrations

of the diffused atoms structural phase transformations can occur, which can result in the formation of new compounds at the interface. Such compounds often possess a wide bandgap and form a band offset with the semiconductor and TCO. From this point of view, a knowledge of structural properties, electronic structure and optical properties of the compounds formed at the interface is important in using them in optoelectronic devices. Further, the crystal structure of compounds formed at the interface will be different from that of the bulk materials due to the interfacial effect and stress in the lattice. So, the structural phase stability studies

⁵ Author to whom any correspondence should be addressed.


 $^{^6\,}$ Present address: SINTEF, Materials and Chemistry, PO Box 124 Blindern, N-0314 Oslo, Norway.

of such compounds with pressure present interest from both fundamental and technologically points of view. It can help to reveal how the interface influences the operation of a particular device and to provide the information required to control the properties of the interface layer.

ZnO and Si are the compounds extensively used in modern semiconductor electronics. The electronegativity of Si and Zn are 1.90 and 1.65, respectively, which are close to each other. The atomic sizes of these elements are also comparable to each other, i.e. 0.117 nm for Si and 0.133 nm for Zn. These data indicate that the diffusion of Si into ZnO can be favorable. As a result, at the interface in the heterostructures of Si/ZnO and SiO₂/ZnO the Si-and Zn-related oxides can be formed, which will affect the device performance. Polymorphs of ZnSiO₃ and Zn₂SiO₄ can be such interfacial oxide layers formed in between Si/ZnO and SiO₂/ZnO [1, 2] due to the solid state reaction. These compounds are of particular technological interest for thin film Si solar cells [3-6], devices where ZnO is deposited on silicate glass as a TCO buffer layer [7], lightemitting diodes [8], ZnO nanowires and nanotips grown on Si and Si on sapphire [9], ZnO particles embedded in sol-gel silica [1], nanostructures, etc [10–16]. The monoclinic ZnSiO₃ nanocrystals have been formed as a result of rapid thermal annealing of SiO₂ with metallic Zn nanocrystals [17]. Also by transmission electron microscopy (TEM) with focused electron beam irradiation, ZnSiO₃ nanoparticles have been found in an SiO₂ layer located in between the ZnO thin film and the Si substrate [18]. Moreover, from x-ray diffraction, TEM and selected-area electron diffraction studies it has been found that orthorhombic ZnSiO₃ can be formed at the interface of the ZnO/Si heterostructure after annealing at 900 °C resulting from the inter-diffusion between ZnO and Si [19].

Crystal structure and structural phase transitions of ZnSiO₃ and Zn₂SiO₄ have been studied experimentally in the past by many authors (see, e.g., [20–25]) at high temperatures in the range 700-1500 °C and pressures 0-17 GPa. ZnSiO₃ in the monoclinic phase with space group (SG) C2/c is generally not found to be stable at atmospheric pressure and it can be obtained as a result of the reaction of willemite Zn₂SiO₄ with quartz at about 3 GPa and subsequent transition to ilmenite at 10-12 GPa [20-25] or 15 GPa [26]. However, it is reported in [21] that ZnSiO₃ with SG C2/c also exists at room temperature and ambient conditions. Upon increasing the pressure, this phase can undergo the following sequence of displacive phase transitions from C2/c to a high pressure phase with SG $P2_1/c(-m_1)$ at 1.92 GPa, which can also be transformed to another high pressure phase with SG C2/c (- m_2) at 4.9 GPa. However, the differences in equilibrium volumes between the latter three structural modifications of ZnSiO₃ are too small to consider them as different polymorphs. Orthorhombic (-o; Pbca) ZnSiO₃ has been synthesized at high pressures and temperatures (see, e.g., [24]) and it is found to be metastable under all conditions.

In the polymorphs of $ZnSiO_3$, Zn atoms are coordinated both octahedrally and tetrahedrally [24] (figure 1). In $ZnSiO_3$ -o the Zn atoms at the octahedral sites have irregular octahedral coordination to the O atoms. $ZnSiO_3$ of trigonal/rhombohedral (-r) symmetry with space group $R\overline{3}$ is known by the mineral

Figure 1. Crystal structures of (a) $ZnSiO_3-m_2$, (b) $ZnSiO_3-o$ and (c) $ZnSiO_3-r$.

name ilmenite. $ZnSiO_3-r$ consists of a slightly distorted hexagonal close-packing array of O atoms with Zn and Si atoms in the interstitials. Structural properties of these compounds have been analyzed in more detail in [20, 23, 27]. However, phase stability of different modifications of $ZnSiO_3$ at low temperatures has not been discussed in detail yet. According to [26] a structural transition from $ZnSiO_3-m_2$ to -r occurs at 15 GPa at $1000\,^{\circ}C$.

The Zn_2SiO_4 reported in [28] has been formed as a result of annealing the $ZnO-SiO_x$ system. Willemite Zn_2SiO_4 has been formed as a result of the reaction of ZnO with SiO_2 [29], which has led to a decrease of concentration of the O vacancies and Zn interstitials. Zn_2SiO_4 has been used to synthesize the Si-doped ZnO nanobelts [30].

Phase transformations of Zn₂SiO₄ have been studied [31, 24, 27] up to pressures ≤17 GPa and temperatures 800-1500 °C. The following sequence of structural transformations has been found [27] between five polymorphs of Zn_2SiO_4 : rhombohedral $(r) \rightarrow tetragonal (t) \rightarrow monoclinic$ (m) \rightarrow orthorhombic (o_1) \rightarrow orthorhombic (o_2) \rightarrow orthorhombic (o_3) . Here the o_1, o_2 and o_3 modifications of the orthorhombic Zn₂SiO₄ denote those with SG symmetry Pbca, Imma and Pbnm, respectively. Owing to the preference of Zn for tetrahedral rather than octahedral coordination by oxygen at low pressures, the Zn₂SiO₄ crystallizes into the phenacite structure with Zn atoms located in distorted octahedral coordination [14, 26, 22, 23]. In Zn₂SiO₄-t the oxygen atoms join together with Si and Zn so that each of the oxygens at the SiO₄ tetrahedra is bonded to Zn atoms, thus forming an integrated part of a Zn-O-Si network (see figure 2). The O atoms are located approximately in the

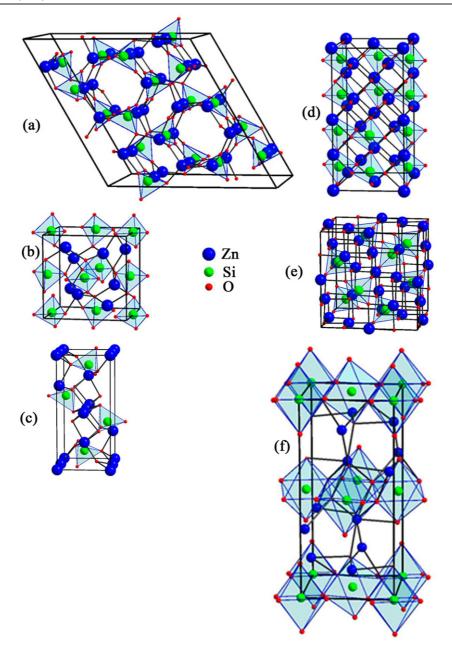


Figure 2. Crystal structures of (a) Zn₂SiO₄-r, (b) Zn₂SiO₄-t, (c) Zn₂SiO₄-o₁, (d) Zn₂SiO₄-o₂, (e) Zn₂SiO₄-c and (f) Zn₂SiO₄-o₃.

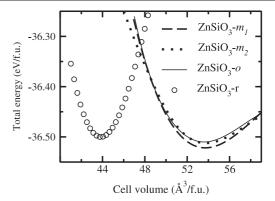
body-centered cubic arrangement in Zn_2SiO_4 -t, while both the Zn and Si atoms are in tetrahedral coordination to the O atoms. In rhombohedral Zn_2SiO_4 the Zn and Si atoms are also tetrahedrally coordinated to O atoms, where the Zn atoms occupy two crystallographically different sites, but the environments around these sites differ only slightly. Although there is no information about the spinel structure of Zn_2SiO_4 , a similar type of compound Mg_2SiO_4 possesses it. The spinels are cubic (-c). They are a class of minerals with the O ions forming a face-centered lattice where Zn cations are octahedrally coordinated and Si atoms are tetrahedrally coordinated.

The above-mentioned experimental results on the existence of different polymorphs of zinc silicates, the possibility of their formation at the interface between ZnO-Si and ZnO-

SiO₂ and the possibility of phase transitions between the polymorphs creates the necessity to study structural properties, electronic structure and optical properties, as well as the interface between the silicates and semiconductors. The study on the electronic structure and optical properties of the intermixed zinc silicates has been performed in [32], which are found to be insensitive to crystal structure modifications and crystallographic directions. Still many questions have been left open. Some of them are the systematic study of bandgap variation in between the zinc silicates and ZnO(Si) and the ways of controlling them, which would be important to know for the influence of the interface layer on current transport. The other one is doping of the silicates by shallow level impurities and H, which allows one to classify the silicates as semiconductors or insulators. However, first of

all it is interesting to know which of the polymorphs of the zinc silicates is the most stable one, whether structural phase transitions can take place at low temperatures and pressures as well and what is the difference between equilibrium volumes of the polymorphs. In the present paper we intend to study these questions for $ZnSiO_3-o, -m_1, -m_2$ and -r as well as for $Zn_2SiO_4-t, -r, -m, -o_1, -o_2, -o_3$ and -c.

2. Methods


The computations have been performed using the density functional theory (DFT) within the local density approximation (LDA). Structural relaxations and calculation of total energies have been performed with the projector-augmented-wave method (PAW) [33, 34] as implemented in the Vienna ab initio simulation package (VASP) [35] using the Ceperley-Alder data [36] for the correlation energy in the parameterization by Perdew-Zunger [37]. The Zn-3d and -4s, O -2s and -2p and Si-3s and -3p have been considered as the valence electrons. The self-consistent calculations were performed using a $4 \times 4 \times 4$ mesh of special **k**-points. Test calculations showed that a plane-wave cutoff energy of 500 eV is sufficient to describe structural properties of zinc silicates reliably. The convergence was achieved when the forces acting on the atoms were <10 meV Å^{-1} and the total energy difference between two consecutive iterations was $<10^{-6}$ eV.

The crystal structures of different modifications of ZnSiO₃ and Zn₂SiO₄ are presented in figures 1 and 2, respectively. Experimentally determined lattice parameters and positional parameters [38, 21] have been used as input. All configurations were fully relaxed using the conjugate gradient method. Here it should be noted that there is some similarity between the structural phase transitions and crystal structures of ZnSiO₃ and MgSiO₃ [20, 23–25]. The latter compound is well studied and is a very important material to explore in the mineralogy of the Earth's deep mantle. So, MgSiO₃ can be used as a model system in the structural studies of ZnSiO₃. In the present paper this similarity shall be used. Due to a lack of experimental data for positional and lattice parameters of ZnSiO₃-r and Zn_2SiO_4-c we have used those for MgSiO₃-r and Mg₂SiO₄-c, respectively, as input for the structural optimization for these two phases.

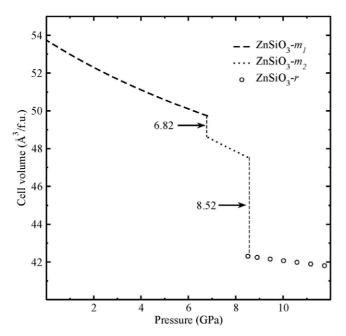
3. Results

3.1. ZnSiO₃

Structural optimization has been performed for all the considered structural modifications by the following procedure: first, atomic positions have been relaxed by the force minimization method, keeping the volume and shape of the crystal fixed. Using the relaxed atomic positions as input, the crystal volume and shape have been relaxed using stress minimization freezing out atomic positions. Then these optimized parameters have been used as input to relax atomic positions, cell volume and shape altogether. Crystal structure information obtained in this way was used as input for calculation of the total energy $(E_{\rm tot})$ as a function of the cell volume (V). The

Figure 3. Total energy vs volume curves for $ZnSiO_3-m_1$, $-m_2$, -o and -r

minima ($E_{\rm tot}^{\rm min}$) of the dependence $E_{\rm tot}(V)$ are taken as the equilibrium volume. Positional and lattice parameters derived from the DFT calculations for the equilibrium lattices are given in table 1 together with experimentally determined values. Analysis of table 1 shows deviation of the calculated equilibrium volumes from the corresponding experimentally determined values by 2.3% for ${\rm ZnSiO_3}$ -o, 3.3% for ${\rm ZnSiO_3}$ - m_1 and 2.4% for ${\rm ZnSiO_3}$ - m_2 . The calculated positional parameters from the structural optimization are found to be overall in good agreement with experimental data. Symmetry of the optimized lattices was checked and found that it is the same as that of the experimentally determined one used as an input for the structural optimization.


Dependence of the total energy on volume has been analyzed for $ZnSiO_3$ (figure 3). The $E_{tot}(V)$ for $ZnSiO_3$ -o is 2.3 meV higher in energy than $ZnSiO_3$ - m_2 at their total energy minimum. The magnitude of E_{tot}^{min} for $ZnSiO_3$ - m_1 is found to be lower than that of $ZnSiO_3$ - m_2 by about 10 meV. Consequently, m_2 is the most stable phase. E_{tot}^{min} for $ZnSiO_3$ -r is found to be about 10 meV higher than that of $ZnSiO_3$ -r which indicates that $ZnSiO_3$ -r is the least stable among the considered phases. Since the difference in $E_{tot}(V)$ between $ZnSiO_3$ -o, $ZnSiO_3$ - m_1 and $-m_2$ is not large, a small fluctuation of temperature and pressure can be sufficient to cause the phase transformation between these phases. This result could explain why metastability is observed experimentally for $ZnSiO_3$ -o at almost all conditions [24].

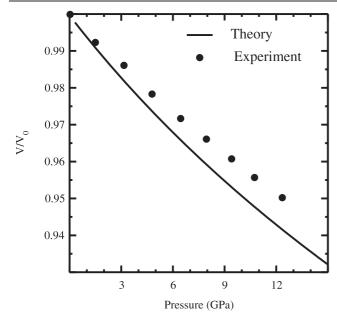
Upon compression the volume dependence of $E_{\rm tot}$ for ${\rm ZnSiO_3-}m_1$ intersects with that for $-m_2$, -r and -o (figure 3), which indicates the possibility of a phase transition between these modifications. The present calculations suggest that upon compression the following sequence of structural phase transitions can take place (figure 4): one from ${\rm ZnSiO_3-}m_1$ to ${\rm ZnSiO_3-}m_2$ and the other from ${\rm ZnSiO_3-}m_2$ to ${\rm ZnSiO_3-}r$ at pressures of 6.8 and 8.5 GPa, respectively, with corresponding volume shrinkage at the phase transition point 1.1 and $5.24~{\rm \AA}^3/{\rm f.u.}$ The calculated transition pressure of 6.8 GPa for the transition ${\rm ZnSiO_3-}m_1 \rightarrow {\rm ZnSiO_3-}m_2$ somewhat agrees with that of 4.9 GPa obtained from experimental high pressure measurements [21]. The calculated transition pressure for the ${\rm ZnSiO_3-}m_1 \rightarrow {\rm ZnSiO_3-}r$ phase transition is 11.0 GPa and this agrees well with the experimental observation of a

Table 1. Unit cell dimensions and volumes, positional parameters, bulk modulus (B_0), as well as the derivative of bulk modulus (B'_0) for ZnSiO₃, -o, - m_1 , - m_2 , - m_3 , - m_4 , - $m_$

Compound	Unit cell (Å)	Atom	Site	X	Y	Z	B_0 (GPa)	B_0'
ZnSiO ₃ -o	$a = 17.4224(18.2040)^{a}$	Zn1	8c	0.1253 (0.1255)	0.3557 (0.3559)	0.4007 (0.4039)	235.8	4.58
Pbca	$b = 8.7544(9.0870)^{a}$	Zn2	8c	0.3760 (0.3761)	0.5140 (0.5092)	0.3949 (0.4005)		
	$c = 5.0881(5.2780)^{a}$	Si1	8c	0.2742 (0.2741)	0.3373 (0.3363)	0.0852 (0.0867)		
	$V = 53.32(54.57)^{a}$	Si2	8c	0.4717 (0.4730)	0.1677 (0.1656)	0.2872 (0.2839)		
		O1	8c	0.1840 (0.1853)	0.3318 (0.3346)	0.0831 (0.0820)		
		O2	8c	0.3108 (0.3115)	0.4995 (0.4966)	0.1045 (0.1040)		
		O3	8c	0.3032 (0.3039)	0.2503 (0.2521)	0.3368 (0.3400)		
		O4	8c	0.5624 (0.5621)	0.3355 (0.3389)	0.7863 (0.7800)		
		O5	8c	0.4301 (0.4327)	0.4811 (0.4853)	0.6999 (0.7040)		
		O6	8c	0.4473 (0.4488)	0.2049 (0.2100)	0.5805 (0.5710)		
$ZnSiO_3-m_1$	$a = 9.6543(9.5781)^{b}$	Zn1	4e	0.2494 (0.2508)	0.6465 (0.6509)	0.2332 (0.2247)	66.5	7.15
$P2_1/c$	$b = 9.0667(8.8905)^{b}$	Zn2	4e	0.2530 (0.2551)	0.0129 (0.0034)	0.2312 (0.2211)		
	$c = 5.2653(5.1798)^{b}$	Si1	4e	0.0507 (0.0468)	0.3370 (0.3403)	0.2906 (0.2924)		
	$V = 53.69(51.99)^{b}$	Si2	4e	0.5583 (0.5568)	0.8332 (0.8338)	0.2500 (0.2397)		
	$\beta = 111.26(109.443)^{b}$	O1	4e	0.8693 (0.8691)	0.3323 (0.3386)	0.1652 (0.1800)		
		O2	4e	0.3764 (0.3779)	0.8362 (0.8367)	0.1309 (0.1300)		
		O3	4e	0.1231 (0.1169)	0.5000 (0.5033)	0.3537 (0.3365)		
		O4	4e	0.6382 (0.6341)	0.9845 (0.9828)	0.3906 (0.3895)		
		O5	4e	0.1119 (0.1090)	0.2529 (0.2662)	0.5850 (0.5982)		
		O6	4e	0.6079 (0.6078)	0.7051 (0.6965)	0.4893 (0.4702)		
$ZnSiO_3-m_2$	$a = 9.3173(9.787)^{a}$	Zn1	4e	0.5000 (0.5000)	0.3921 (0.3919)	0.2500 (0.2500)	47.4	4.2
C2/c	$b = 9.8180(9.161)^{a}$	Zn2	4e	0.5000 (0.0000)	0.7289 (0.2361)	0.2500 (0.2500)	$(72.0)^{b}$	$(7.0)^{b}$
	$c = 5.0898(5.296)^{a}$	Si1	8f	0.3060 (0.3016)	0.0837 (0.0849)	0.2646 (0.2668)	(101.0)	
	$V = 53.92(55.26)^{a}$	O1	8f	0.1238 (0.1241)	0.0833 (0.0868)	0.1427 (0.1473)		
	$\beta = 111.80(111.42)^{a}$	O2	8f	0.3839 (0.3787)	0.2390 (0.2393)	0.3783 (0.3719)		
		O3	8f	0.3583 (0.3533)	0.0321 (0.0238)	0.0184 (0.0273)		
ZnSiO ₃ -r	$a = 4.8115(4.7469)^{c}$	Zn	6c	0.0000 (0.0000)	0.0000 (0.0000)	0.3692 (0.3599)	177.89	5.5
$R\bar{3}$	$c = 13.9974(13.754)^{c}$	Si	6c	0.0000 (0.0000)	0.0000 (0.0000)	0.1607 (0.1556)	$(216.0)^{c,d}$	
	$V = 46.77(44.73)^{c}$	O	18f	0.9911 (0.9645)	0.3736 (0.3200)	0.4286 (0.4896)		

^a From [38]. ^b From [21]. ^c From [23]. ^d From [23, 25].

Figure 4. Calculated cell volume versus pressure for $ZnSiO_3$ - m_1 , - m_2 and -r.


pressure-induced phase transition from ZnSiO₃-*m* to -*r* at 10–12 GPa [20–24] and smaller than 15 GPa [26]. Furthermore, our studies of the pressure dependence of the volume for

 $ZnSiO_3$ -r (figure 5) is found to be in good agreement with recent experimental data from [25].

Bulk modulus (B_0) is the parameter characterizing compressibility of a solid. Among the considered polymorphs of ZnSiO₃, the calculated B_0 values vary in the range from 47.4 GPa for ZnSiO₃- m_2 to 235.8 GPa for ZnSiO₃-o (table 1). These analyses show that ZnSiO₃-o is the hardest phase among the considered polymorphs. The pressure derivative of the bulk modulus (B'_0) for some of the silicates is surprisingly large. It equals 4.58 for ZnSiO₃-o, 7.15 for ZnSiO₃- m_1 and 5.5 for ZnSiO₃-r. We have cross-checked the calculated bulk modulus and its pressure derivative with two independent fitting programs as well as with different equation-of-state models and arrived at the same results.

3.2. Zn₂SiO₄

From the structural optimization the equilibrium structural parameters for different polymorphs of $\rm Zn_2SiO_4$ have been calculated and presented in table 2. Analysis of table 2 shows that the calculated equilibrium volumes differ from the experimentally determined values by <1.4% for $\rm Zn_2SiO_4$ - o_2 , 3.2% for $\rm Zn_2SiO_4$ -t and 3.4% for $\rm Zn_2SiO_4$ -t. For $\rm Zn_2SiO_4$ -t the calculated equilibrium volume is considerable smaller by 8.6% from the experimentally determined one. The discrepancy between the calculated and experimental

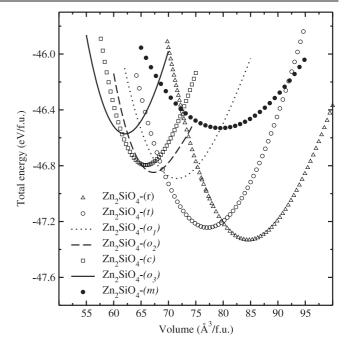
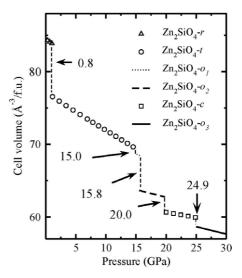


Figure 5. Pressure dependence of the cell volume for $ZnSiO_3-r$ along with the available experimental data from [25].


equilibrium volume for different polymorphs may be related to the difference in stoichiometry of the experimentally studied phases and temperature effects, and also uncertainty in some of the lattice and positional parameters. For example, the lattice parameters for Zn_2SiO_4 -m and Zn_2SiO_4 - o_1 in [27] correspond to non-stoichiometric crystals with the atomic ratio of Zn:Si=1.7 and 1.9, respectively, whereas in our calculations the atomic ratio was always Zn:Si=2. Overall the calculated positional parameters agree well with experimental data given in table 2. We have checked the symmetry of the lattices after structural relaxation and found that their symmetry remain the same as that of the experimentally determined one for all considered polymorphs.

Dependence of the total energy with volume for Zn_2SiO_4-r , -t, $-o_1$, $-o_2$, -c and $-o_3$ are displayed in figure 6. Among these polymorphs, Zn_2SiO_4-r possesses the largest equilibrium volume and smallest total energy at the minimum. Zn_2SiO_4-c possesses the smallest equilibrium volume, but Zn_2SiO_4-m has the largest total energy at E_{tot}^{min} among the considered phases. Consequently, according to our calculations Zn_2SiO_4-r is the most stable phase while Zn_2SiO_4-m is the least stable phase. In addition to the largest total energy, the dependence $E_{tot}(V)$ for Zn_2SiO_4-m is crossed by that of $Zn_2SiO_4-o_1$ at its minimum. Consequently, even if Zn_2SiO_4-m has been formed, it can be transformed into $Zn_2SiO_4-o_1$, without pressing or heating.

Analysis of figure 6 shows that the total energy variation with volume for Zn_2SiO_4 -r intersects with Zn_2SiO_4 -t at high pressure. At more volume compression, $E_{tot}(V)$ for other polymorphs also intersect in the following sequence: Zn_2SiO_4 -t with $-o_1$, $-o_1$ with $-o_2$, $-o_2$ with -c and -c with $-o_3$. This result indicates the possibility of pressure-induced phase transition, which is demonstrated in figure 7. The phase transition from Zn_2SiO_4 -r to Zn_2SiO_4 -t occurs at 0.8 GPa with volume shrinkage 7.3 Å 3 /f.u., whereas Zn_2SiO_4 -t to Zn_2SiO_4 - o_1 takes place at 15.0 GPa with

Figure 6. Total energy versus volume for Zn_2SiO_4-r , -t, $-o_1$, $-o_2$, -c, $-o_3$ and -m.

Figure 7. Calculated cell volume versus pressure for Zn_2SiO_4-r , -t, $-o_1$, $-o_2$, -c and $-o_3$.

very small volume shrinkage $0.8 \text{ Å}^3/\text{f.u.} \text{ Zn}_2 \text{SiO}_4-o_1$ can exist at small pressure range and upon compression it can be transformed into $\text{Zn}_2 \text{SiO}_4-o_2$. The volume variation at the transition $\text{Zn}_2 \text{SiO}_4-o_1$ to $-o_2$ occurring at 15.8 GPa is $\sim 4.7 \text{ Å}^3/\text{f.u.}$ Upon compression $\text{Zn}_2 \text{SiO}_4-o_2$ can transform into $\text{Zn}_2 \text{SiO}_4-c$ at 20.0 GPa (figure 7) with volume shrinkage 2.1 Å $^3/\text{f.u.}$ Zn₂SiO₄-c can be transformed to Zn₂SiO₄-o₃ at 24.9 GPa with small volume variation $\sim 1.3 \text{ Å}^3/\text{f.u.}$ It should be noted that the present calculations are, strictly speaking, valid only for the stoichiometric compounds at low temperatures. In contrast off-stoichiometry and temperature could stabilize the experimentally identified high pressure

Table 2. Unit cell dimensions, equilibrium volumes, positional parameters, bulk modulus (B_0) and the pressure derivative of bulk modulus (B'_0) for Zn_2SiO_4 -t, -r, -m, - o_1 , - o_2 and -c derived from the density functional total energy calculations at the total energy minimum. Values given in parentheses refer to experimental data [38].

Compound	Unit cell (Å)	Atom	Site	X	Y	Z	B_0 (GPa)	B_0'
Zn ₂ SiO ₄ -r	$a = 13.8469(13.971)^{a}$	Zn1	18f	0.1908 (0.1916)	0.2098 (0.2087)	0.5843 (0.5844)	138.8	3.3
$R\bar{3}$	$c = 9.1781(9.3340)^{a}$	Zn2	18f	0.5264 (0.5579)	0.8818 (0.9655)	0.5841 (0.5815)		
	$V = 84.670(87.66)^{a}$	Si	18f	0.1951 (0.1963)	0.2127 (0.2118)	0.2499 (0.2510)		
		O1	18f	0.7924 (0.8767)	0.5435 (0.5415)	0.4376 (0.3918)		
		O2	18f	0.1271 (0.1295)	0.2063 (0.3178)	0.3974 (0.3955)		
		O3	18f	0.1083 (0.1100)	0.2127 (0.2175)	0.7507 (0.7496)		
		O4	18f	0.9854 (0.9335)	0.6568 (0.6283)	0.5838 (0.5007)		
Zn ₂ SiO ₄ -t	$a = 6.9562(7.0069)^{b}$	Zn	8d	0.1549 (0.1570)	0.2500 (0.2500)	0.1250 (0.1250)	135.8	1.3
$I\overline{4}2d$	$c = 6.3533(6.4637)^{b}$	Si	4b	0.0000 (0.0000)	0.0000 (0.0000)	0.5000 (0.5000)		
	$V = 76.86(79.38)^{b}$	0	16e	0.3054 (0.3079)	0.4832 (0.4890)	0.1070 (0.1376)		
Zn ₂ SiO ₄ -m	$a = 5.3752(5.069)^{c}$	Zn1	4e	0.3542	0.3811	0.5969	63.0	1.7
$P2_1/n$	$b = 7.8794(10.292)^{c}$	Zn2	4e	0.4476	0.9915	0.3091	03.0	1.,
	$c = 7.5624(6.667)^{c}$	Si	4e	0.1760	0.7380	0.5414		
	$V = 79.55(87.0)^{c}$	01	4e	0.2697	0.9276	0.5053		
	$\beta = 96.55(\sim 90)^{c}$	O2	4e	0.0135	0.7350	0.7089		
	p = 30.33(30)	O3	4e	0.4237	0.6246	0.5874		
		O4	4e	0.0019	0.6468	0.3805		
Zn ₂ SiO ₄ -o ₁	$a = 4.7231(4.79)^{c}$	Zn1	4a	0.0000	0.0000	0.0000	157.8	4.3
Pbnm	$b = 10.1975(10.3)^{c}$	Zn2	4c	0.9850	0.2803	0.2500	157.0	1.5
	$c = 5.9430(6.02)^{c}$	Si	4c	0.4259	0.0960	0.2500		
	$V = 71.56(74.25)^{c}$	01	4c	0.7642	0.0936	0.2500		
	, = ,1.50(, 1.25)	O2	4c	0.2164	0.4491	0.2500		
		O3	8d	0.2797	0.1643	0.0335		
Zn ₂ SiO ₄ -o ₂	$a = 5.8096(5.740)^{c}$	Zn1	4a	0.0000	0.0000	0.0000	222.0	11.1
Imma	$b = 11.6392(11.504)^{c}$	Zn2	4e	0.2500	0.7500	0.4683	222.0	
	$c = 8.5397(8.395)^{c}$	Zn3	8g	0.2500	0.1254	0.2500		
	$V = 69.29(69.30)^{c}$	Si	8h	0.0000	0.1208	0.6164		
	, 03.23 (03.20)	01	4e	0.0000	0.2500	0.2125		
		O2	4e	0.0000	0.2500	0.7130		
		O3	8h	0.0000	0.4873	0.7579		
		O4	16j	0.2639	0.1229	0.9917		
Zn ₂ SiO ₄ -o ₃	a = 4.8891	Zn	8c	0.9964	0.0553	0.3367	235.8	4.6
Pbca	b = 4.9980	Si	4a	0.0000	0.0000	0.0000	200.0	
	c = 10.1666	O1	8c	0.2012	0.2874	0.0494		
	V = 62.11	O2	8c	0.8850	0.9553	0.1588		
Zn ₂ SiO ₄ -c	$a = 8.0755^{\circ}$	Zn	8b	0.5000	0.5000	0.5000	222.2	4.6
$Fd\bar{3}m$	$V = 65.83^{\circ}$	Si	32e	0.8750	0.8750	0.8750		
ı usm	v — 03.03	0	32e	0.2438	0.2438	0.2438		

^a From [43]. ^b From [31].

polymorphs such as Zn_2SiO_4 -m, $-o_1$, $-o_2$ and $-o_3$. In order to clarify the origin of stability of these polymorphs at high pressures and low temperature high pressure experimental measurements on stoichiometric Zn_2SiO_4 at low temperatures are needed.

The calculated bulk modulus for Zn_2SiO_4 polymorphs (table 2) vary in the range from 63.0 GPa for Zn_2SiO_4 -m to 235.8 GPa for Zn_2SiO_4 - o_3 . It follows from these analyses that Zn_2SiO_4 - o_3 is the hardly compressible phase. The calculated bulk modulus and its pressure derivative for Zn_2SiO_4 -c is found to be in good agreement (see table 2) with the respective experimentally determined values of 212 GPa and $B_0' = 4$ for Mg_2SiO_4 -c [39] and the bulk modulus of 216 GPa for Zn_2SiO_4 -c [23]. This result indicates that the valence and bonding behavior of Zn_2SiO_4 is similar to that of the

geochemically important material Mg₂SiO₄. However, among the considered Zn₂SiO₄ polymorphs, Zn₂SiO₄-*m* is found to be the softest phase.

4. Discussion

One of the important questions is which of the $ZnSiO_3$ and Zn_2SiO_4 polymorphs can be formed at the interface ZnO–Si (SiO_2) and how it depends on growth and device operation conditions. Although some preliminary studies are already available in the literature, there is no systematic study of the point. For example, a crystalline $ZnSiO_3$ is formed [40] upon irradiation of nanocomposite ZnO–SiO $_2$ films with ultraviolet light because of the photo-induced reaction. From analysis of secondary ion mass spectroscopy inter-diffusion of Zn (Si) into

^c Only lattice parameters of [27] have been used and the positional parameters are from [38] with similar chemical formula and SG, i.e. Ca_2SiO_4 type structure with SG Pbca for Zn_2SiO_4 - o_3 , Mg_2SiO_4 type structure with SG Pbca for Zn_2SiO_4 - o_3 , Mg_2SiO_4 type structure with SG Imma for Zn_2SiO_4 - o_2 and Mg_2SiO_4 type structure with SG Pbnm for Zn_2SiO_4 - o_1 have been used for the present computations. Lattice and positional parameters for Zn_2SiO_4 -c have used Mg_2SiO_4 type structure with SG $Fd\bar{3}m$.

Si (ZnO) has been reported at the interface between ZnO film and Si substrate [2]. By means of cathodoluminescence and glancing-angle x-ray diffraction the tetragonal modification of Zn₂SiO₄ was proved to be present. Zn₂SiO₄ is also formed at the interface of ZnO/Si heterostructures [5, 2, 41]. can form a large band offset with Si and ZnO [5], which is assumed to be one of the reasons for the low 8.5% efficiency of crystalline Si-ZnO solar cells [3]. Formation of the rhombohedral modification of Zn₂SiO₄ at the boundary between ZnO particles and the SiO2 matrix has also been reported [16]. These findings are important and indicate that the idea about the formation of zinc silicates is not far from reality. From the theoretical study of the present paper we found that $ZnSiO_3-m_1$ and Zn_2SiO_4-r are the most stable polymorphs. A systematic experimental study of this point is needed.

The other important point is the pressure at which the stable polymorphs $ZnSiO_3$ - m_1 and Zn_2SiO_4 -r can be transformed into another one. Analysis of the above theoretical findings corresponding to T=0 K and experimental results corresponding to high temperatures indicates that the transition pressure is very large, which might not be available in $ZnSiO_3$ or Zn_2SiO_4 containing device structures. Consequently, the possibility of phase transitions at ambient pressures (<6.82 GPa for $ZnSiO_3$ and <0.80 GPa for Zn_2SiO_4) can be excluded. This finding has important implications such as, for example, the possibility of lattice expansion/shrinkage. Phase-transition-induced abnormal temperature dependence of electrical conductivities experimentally observed [42] in ZnTe:Cu can also be excluded.

Comparative analysis [32] of electronic structure and optical properties of the $ZnSiO_3$ and Zn_2SiO_4 shows that optical parameters and conduction band electron effective masses of the compounds are almost isotropic and their dependence on crystal structure is negligible. Furthermore, the calculated absorption coefficient, reflectivity, refractive index and extinction coefficients are $<10^3~cm^{-1}$, 0.15, 2.2 and 0.3, respectively, which indicate the possibility of using the zinc silicates as antireflection coatings. Consequently, pressure-induced phase transitions are not expected to cause modulation of optical properties of the $ZnO-ZnSiO_3$ (Zn_2SiO_4)–Si-based device structures.

5. Conclusion

Phase stability and pressure-induced structural transitions between different polymorphs of $ZnSiO_3$ and Zn_2SiO_4 have been studied based on *ab initio* total energy calculations. Among the monoclinic phase with space groups $P2_1/c$ and C2/c, rhombohedral $(R\bar{3})$ and orthorhombic (Pbca) modifications, the low pressure monoclinic $ZnSiO_3$ phase is found to be the most stable one. Two sequences of structural phase transitions between different modifications of the $ZnSiO_3$ have been found. One sequence is from $ZnSiO_3$ $(P2_1/c)$ to $ZnSiO_3$ -(C2/c) and the other one is from $ZnSiO_3$ -(C2/c) to $ZnSiO_3$ - $R\bar{3}$. At high pressure monoclinic $ZnSiO_3$ (C2/c) can co-exist with orthorhombic (Pbca) and equilibrium volume and total energy corresponding

to these two polymorphs are found to be slightly different from each other. This indicates that a small fluctuation in the environment can be sufficient for an orthorhombic to monoclinic transition, which could also explain why the orthorhombic phase is metastable under all conditions. These two polymorphs are found to co-exist in a certain pressure and volume range. According to the present total energy calculations the ilmenite form of ZnSiO₃ is found to be the most unstable one at low temperatures and high pressures. Distinct from previous experimental studies at high temperatures, no pressure-induced phase transition has been found into/from this modification. This indicates that the ilmenite phase of ZnSiO₃ may be stabilized by the lattice dynamics or oxygen stoichiometry. Among the rhombohedral, tetragonal, orthorhombic, orthorhombic, cubic and orthorhombic modifications of Zn₂SiO₄ the rhombohedral phase is found to be most stable. It can be transformed into the tetragonal phase at high pressures, which upon further compression transformed into a spinel modification. calculated transition pressures agree with experimental data. Based on analogy with Mg₂SiO₄ orthorhombic Zn₂SiO₄ has been studied. It is found that this polymorph possesses relatively large bulk modulus and, consequently, can be considered as a hardly compressible phase. The presently considered silicates can exist at the interface between ZnO and Si (SiO₂). Although the reported structural transformation between the zinc silicate polymorphs is possible, the transitions occur at high pressures. So, at low pressures, the phasetransition-induced lattice expansion/shrinkage or modulation of the electronic structure and optical properties of the device structures with ZnSiO₃ and Zn₂SiO₄ is not expected.

Acknowledgments

This work has received financial and supercomputing support from the Research Council of Norway within FUNMAT and NANOMAT projects, as well as from the Academy of Sciences of Uzbekistan. SZK thanks A Klaveness for useful discussions and computational help.

References

- [1] He H P, Wang Y X and Zou Y M 2003 Photoluminescence property of ZnO–SiO₂ composites synthesized by sol–gel method J. Phys. D: Appl. Phys. 36 2972–5
- [2] Xu X et al 2003 Formation mechanism of Zn₂SiO₄ crystal and amorphous SiO₂ in ZnO/Si system J. Phys.: Condens. Matter 15 L607–13
- [3] Kluth O et al 1999 Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells *Thin Solid* Films 351 247–53
- [4] Kobayashi H, Mori H, Ishida T and Nakato Y 1995 Zinc-oxide N-Si junction solar-cells produced by spray-pyrolysis method J. Appl. Phys. 77 1301-7
- [5] Meier U and Pettenkofer C 2005 Morphology of the Si–ZnO interface Appl. Surf. Sci. 252 1139–46
- [6] Xu X L et al 2003 Formation mechanism of Zn₂SiO₄ crystal and amorphous SiO₂ in ZnO/Si system J. Phys.: Condens. Matter 15 L607–13
- [7] Birkmire R W 2001 Compound polycrystalline solar cells: recent progress and Y2K perspective Sol. Energy Mater. Sol. Cells 65 17–28

- [8] Nakanishi Y, Miyake A, Tatsuoka H, Kominami H, Kuwabara H and Hatanaka Y 2005 HRTEM observation of interface states between ZnO epitaxial film and Si(111) substrate Appl. Surf. Sci. 244 359–64
- [9] Chen H et al 2006 Interface properties of ZnO nanotips grown on Si substrates J. Electron. Mater. 35 1241–5
- [10] Amekura H, Kono K, Kishimoto N and Buchal C 2006 Formation of zinc-oxide nanoparticles in SiO₂ by ion implantation combined with thermal oxidation *Nucl. Instrum. Methods Phys. Res.* B 242 96–9
- [11] Amekura H, Sakuma Y, Kono K, Takeda Y, Kishimoto N and Buchal C 2006 Luminescence from ZnO nanoparticles/SiO₂ fabricated by ion implantation and thermal oxidation *Physica* B 376 760–3
- [12] Amekura H et al 2006 Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence Appl. Phys. Lett. 88 153119
- [13] Amekura H, Umeda N, Yoshitake M, Kono K, Kishimoto N and Buchal C 2006 Formation processes of zinc-oxide nanoparticles by ion implantation combined with thermal oxidation J. Cryst. Growth 287 2–6
- [14] Cai Y and Sandhage K H 2005 Aug Zn₂SiO₄-coated microparticles with biologically-controlled 3D shapes *Phys.* Status Solidi a 202 R105–7
- [15] Emel'chenko G A et al 2005 Opal-ZnO nanocomposites: structure and emission properties Semiconductors 39 1328–32
- [16] Ma J G et al 2005 Preparation and characterization of ZnO particles embedded in SiO₂ matrix by reactive magnetron sputtering J. Appl. Phys. 97 103509
- [17] Yuk J M, Lee J Y, No Y S, Kim T W and Choi W K 2008 Transformation mechanisms from metallic Zn nanocrystals to insulating ZnSiO₃ nanocrystals in a SiO₂ matrix due to thermal treatment Appl. Phys. Lett. 93 221910
- [18] Shin J W, No Y S, Kim T W and Choi W K 2008 Formation and microstructural properties of locally distributed ZnSiO₃ nanoparticles embedded in a SiO₂ layer by using a focused electron beam *J. Nanosci. Nanotechnol.* **8** 5566–70
- [19] Yuk J M et al 2008 Formation mechanism of ZnSiO₃ nanoparticles embedded in an amorphous interfacial layer between a ZnO thin film and an n-Si(001) substrate due to thermal treatment J. Appl. Phys. 103 083520
- [20] Akaogi M, Yusa H, Ito E, Yagi T, Suito K and Iiyama J T 1990 The ZnSiO₃ clinopyroxene-ilmenite transition—heat-capacity, enthalpy of transition, and phase-equilibria *Phys. Chem. Miner.* 17 17–23
- [21] Arlt T T and Angel R J 2000 Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi₂O₆ and ZnSiO₃ Phys. Chem. Miner. 27 719–31
- [22] Ito E and Matsui Y 1979 High-pressure transformations in silicates, germanates, and titanates with ABO₃ stoichiometry *Phys. Chem. Miner.* 4 265–73
- [23] Leinenweber K, Navrotsky A, McMillan P and Ito E 1989 Transition enthalpies and entropies of high-pressure zinc metasilicates and zinc metagermanates *Phys. Chem. Miner.* 16 799–808

- [24] Morimoto N, Nakajima Y, Syono Y, Akimoto S and Matsui Y 1975 Crystal-structures of pyroxene-type ZnSiO₃ and ZnMgSi₂O₆ Acta Crystallogr. B 31 1041–9
- [25] Sato Y, Ito E and Akimoto S I 1977 Hydrostatic compression of ilmenite phase of ZnSiO₃ and MgGeO₃ *Phys. Chem. Miner.* 2 171–6
- [26] Ito E and Matsui Y 1975 High-pressure synthesis of ZnSiO₃ ilmenite *Phys. Earth Planet. Inter.* 9 344–52
- [27] Syono Y, Akimoto S I and Matsui Y 1971 High pressure transformations in zinc silicates J. Solid State Chem. 3 369–80
- [28] Kim H W, Shim S H, Lee J W, Lee C and Jeoung S C 2008 ZnO-sheathed SiO_x nanowires: annealing effect *Opt. Mater.* 30 1221–4
- [29] Chen J K, Tang K L, Tang T P and Chang J T 2008 Effects of zinc oxide and porosity on permittivity of sintered zinc sulfide-silicon dioxide *Japan. J. Appl. Phys.* 47 5539–44
- [30] Cheng B C, Yu X M, Liu H J and Wang Z G 2008 Zn₂SiO₄/ZnO core/shell coaxial heterostructure nanobelts formed by an epitaxial growth *J. Phys. Chem.* C 112 16312–7
- [31] Marumo F and Syono Y 1971 Crystal structure of Zn₂SiO₄-Ii, a high-pressure phase of willemite Acta Crystallogr. B 27 1868
- [32] Karazhanov S Z, Ravindran P, Fjellvag H and Svensson B G 2009 Electronic structure and optical properties of ZnSiO₃ and Zn₂SiO₄ J. Appl. Phys. submitted
- [33] Blochl P E 1994 Projector augmented-wave method *Phys. Rev.* B **50** 17953–79
- [34] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method *Phys. Rev.* B 59 1758
- [35] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
- [36] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
- [37] Perdew J P and Zunger A 1981 *Phys. Rev.* B **23** 5048
- [38] Inorganic Crystal Structure Database Karlsruhe: Gmelin Institut 2001
- [39] Ito E, Akaogi M, Topor L and Navrotsky A 1990 Negative pressure–temperature slopes for reactions forming MgSiO₃ perovskite from calorimetry *Science* 249 1275–8
- [40] Taghavinia N, Lee H Y, Makino H and Yao T 2005 Evolution of roughness and photo-crystallization effect in ZnS-SiO₂ nanocomposite films *Nanotechnology* 16 944–8
- [41] Xu X L et al 2002 Annealing effect for surface morphology and luminescence of ZnO film on silicon Chem. Phys. Lett. 364 57–63
- [42] Zhang J-q et al 2002 The structural phase transition and mechanism of abnormal temperature dependence of conductivity in ZnTe:Cu polycrystalline thin films Thin Solid Films 414 113–8
- [43] Simonov M A, Sandomirskii P A, Egorovtismenko I K and Belov N V 1977 Crystal-structure of willemite, Zn₂SiO₄ Dokl. Akad. Nauk SSSR 237 581–4